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The general form of the electrostatic potential around an arbitrarily charged colloid at a flat interface
between a dielectric and a screening phase �such as air and water, respectively� is analyzed in terms of a
multipole expansion. The leading term is isotropic in the interfacial plane and varies with d−3 where d is the
in-plane distance from the colloid. The effective interaction potential between two arbitrarily charged colloids
is likewise isotropic and proportional to d−3, thus generalizing the dipole-dipole repulsion first found for point
charges at water interfaces. Anisotropic attractive interaction terms can arise only for higher powers d−n with
n�4. The relevance of these findings for recent experiments is discussed.
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The self-assembly of stably trapped, submicrometer col-
loidal particles at water-air or water-oil interfaces has gained
much interest in recent years. For the specific case of charge-
stabilized colloids at interfaces, the repulsive part of their
mutual interaction resembles a dipole-dipole interaction at
large separations. This may be understood theoretically by
approximating the colloid as a point charge located either
right at the interface �1,2� �i.e., assuming charges on the
colloid-water interface� and/or above the interface �3� �i.e.,
assuming charges on the colloid-air or colloid-oil interface�.
Additionally, the formation of metastable mesostructures
with such colloids points to the possible existence of inter-
colloidal attractions far beyond the range of van der Waals
forces �4–6�; however, care must be taken to avoid contami-
nations of the interface which lead to colloid mesostructures
with similar appearance �7�. Previous work �8–12� aimed at
relating this attractive minimum to capillary interactions due
to interfacial deformations caused by a homogeneous surface
charge on the colloids but with no conclusive answer. In
recent work �5,6�, it was experimentally shown that the
charge-carrying surface groups used for charge-stabilizing
polystyrene colloids are actually distributed quite inhomoge-
neously and patchily over the colloid surface. Thus it was
speculated in Refs. �5,6� that through this inhomogeneous
charge distribution like-charged colloids could acquire effec-
tive dipole moments in the interface plane and attractive
electrostatic interactions of dipole-dipole type could arise,
which might overcome the repulsion at shorter distances.
Motivated by the finding of inhomogeneous surface charge
on colloids, we extend the asymptotic results for the electro-
static potential and interaction of point charges at water in-
terfaces �2� to the general case of an arbitrary, localized col-
loidal charge distribution using a multipole expansion. The
presence of the interface leads to restrictions in the multipole
coefficients of the potential around a single colloid and of the
interaction energy between two colloids. In particular, we
find that the leading term in the effective interaction energy
between two colloids at lateral distance d is isotropic in the
interfacial plane, repulsive and proportional to d−3 regardless
of the inhomogeneities of the charge distributions on the col-

loids. Angular dependencies enter the effective interaction
potential only in higher orders.

For a quick insight into the effect of an interface on the
multipole expansion of the electrostatic potential, we con-
sider a toy model with the water phase as a perfect conduc-
tor. The flat interface is located at z=0 and the colloid is
modeled by a fixed charge distribution �C�r� above the water
phase. The boundary condition at z=0 simply implies that
there is no tangential �or in-plane� electric field and the po-
tential for z�0 can be obtained with the method of image
charges. Therefore, the effective �real+image� charge distri-
bution is spatially localized and can be enclosed in a ball of
finite radius R �see Fig. 1 with �−1→0�. In standard spherical
coordinates �s ,� ,�� measured from the center of this ball,
the potential in the upper phase for s�R can be written as a
multipole expansion �+�s ,� ,��=��ma�ms−�−1Y�m�� ,��, in
terms of normalized spherical harmonics Y�m �in the remain-
der of the paper, the � �	� index will refer to evaluation in
the upper �lower� phase�. The boundary condition of vanish-
ing in-plane electric field at the interface ��=
 /2� implies
a�m=0 for �+m even. Thus, the monopole vanishes �a00

=0� as well as the in-plane dipole �a1�1=0�, and the leading
decay is described generically by a dipole perpendicular to
the interface �a10�0�. Consider a second, identical colloid
located at an in-plane position d= �dx ,dy�. The total potential
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FIG. 1. Geometrical configuration of the electrostatic problem:
the potential is calculated in the domain outside the sphere of radius
R, which encloses the colloidal particle. The flat interface at z=0
separates an upper dielectric phase �dielectric constant �+� from a
lower electrolytic phase �dielectric constant �−, Debye screening
length �−1�.
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�+ is now the linear superposition of the single-particle po-
tentials �+

0 for each colloid, and the electrostatic energy of
the two-particle configuration is U=U0+�d3r �C�r��+

0�r
+d�, where U0 is the energy in the limit d→. Taylor ex-
panding �+

0 about r=0, one obtains to leading order in 1 /d

U − U0 �
pz

2

2d3 �d → � , �1�

where pz=2�d3r z�C�r�=a10�3 / �4
� is the dipolar moment
of �C and its image charge in the direction normal to the
interface. This dipole-dipole interaction energy differs by a
factor of one-half from the textbook result because the elec-
trostatic energy of only the colloid charges is half of that of
the system with image charges.

The image charge construction in the case of perfectly
conducting water provides an intuitive explanation of the
origin of the normal dipole and the absence of the in-plane
dipole. In the following we demonstrate that this finding still
holds in the more realistic case of water being an electrolyte
and the colloidal particle having an arbitrary shape, possibly
protruding into the region z�0. Assuming linear screening,
the electrostatic potential satisfies ��−��

2 ����r�=0 with
�+=0 and �−=� being the inverse screening length in water.
We search for a solution outside a ball of radius R whose
center is the coordinate origin and which encloses the colloid
�see Fig. 1� with the boundary conditions that the potential
�i� vanishes at infinity, �ii� reduces to a given potential
�R�� ,�� at the surface of the ball s=R, and �iii� is continu-
ous at the interface z=0, and that �iv� the associated electric
displacement perpendicular to the interface is continuous,
i.e.,

�+	 ��+

�z
	

z=0
= �−	 ��−

�z
	

z=0
�r � R� . �2�

The function �R�� ,�� is determined by the solution of the
electrostatic problem inside the ball and contains the relevant
information on the precise geometrical and electric proper-
ties of the particle. The properties of the electrostatic poten-
tial outside the ball �derived below� will be independent of
the specific form of �R and thus of the charge distribution
inside the ball. By decomposing the problem in the full do-
main into the solution of problems in simpler domains �the
exterior of the sphere s=R and each of the half spaces de-
fined by z=0—details can be found in Ref. �13��, one can
finally write the solution as the superposition ���r�
=��

cyl�r ,z ,��+��
sph�s ,� ,��, where the contribution

��
cyl�r ,z ,�� �using standard cylindrical coordinates �r ,z ,���

is given by

��
cyl�r,z,�� = �

m=−

+

eim�

0



dq Am�q�J�m��qr�e−K�z �3�

with K�= ��q2+��
2 , and the contribution ��

sph �using
spherical coordinates� reads

��
sph�s,�,�� = �

�=0



�
m=−�

+�

C�m
� R�

��s�Y�m��,��

�R�
��s� ª s� d�

�s ds�� e−��s

s
�� . �4�

The coefficients C�m
� are given by

C�m
� = �1 − �− 1��−m�


0

2


d�

0

�1

d�cos ��Y�m
* ��,��

� ��R��,�� − ��
cyl�r = R sin �,z = R cos �,��� ,

�5�

such that ��
sph=0 at z=0, ���s=R�=�R�� ,��, and the

boundary conditions �i�–�iii� are satisfied automatically. The
coefficients Am�q� in the expression for ��

cyl �Eq. �3�� must
be chosen to enforce the boundary condition �2�. This con-
dition can be extended to the region 0�r�R by continuing
the fields ���r� with any virtual solution into the interior of
the ball, s�R. The precise form of the continuation is irrel-
evant, since the solution outside the ball depends only on the
potential at the surface of the ball, �R�� ,�� �Faraday’s cage
effect�. Thus, by using orthonormality and closure of the set
of Bessel functions �J�m��qr��q��0,� in the domain 0�r�,
Eq. �2� can be solved for the coefficients Am�q�:

Am�q� =

q�
�=0



��+Ĉ�m
+ ��m

+ �q� − �−Ĉ�m
− ��m

− �q��

�+q + �−
�q2 + �2

, �6�

with Ĉ�m
�
ª−e−im���Y�m��=
 /2,��C�m

� and ��m
� �q�

ª�R
+dr R�

��r�J�m��qr�, which are the Hankel transforms of
the radial dependence of the spherical part ��

sph �see Eq. �4��
continued into the region s�R by zero.1 Equation �6� is not
the explicit expression for the coefficients Am�q� because
they appear implicitly also in the coefficients C�m

� �see Eq.
�5��, but it does provide their dependence on q. In particular,
for �−m odd �i.e., when C�m

� �0�, the functions ��m
� �q� pos-

sess a Taylor expansion around q=0 with the lowest term
being of order q�m�, so that

Am�q� = �
j=0



ajmqj with ajm = 0 if j � �m� . �7�

The existence of a Taylor expansion in q of the coefficients
Am�q� allows us to extract the large-r behavior of the poten-
tial and the z component of the electric field at the interface.
Introducing the factors

1This specific choice of the continuation can be achieved by
choosing appropriate charge and dipole densities inside the ball �s
�R� which, however, have no effect on the solution outside the ball
since �R is fixed.
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J jm ª lim
z→0



0



dp pjJ�m��p�e−zp =

2 j� �m� + j + 1

2
�

� �m� − j + 1

2
�

and inserting the expansion �7� into the corresponding defi-
nitions of the fields, one obtains2

���r,�,z = 0� � �
j=0



�
m=−j+1

j−1
eim�

rj+1 ajmJ jm

�−
a20

r3 −
3

r4�
�

a3�1e�i�
¯ , �8�

	 ��+

�z
	

z=0
� �

j,m

eim�

rj+2 �rj+1R j
+�r�Ĉjm

+ − ajmJ j+1,m�

�
a10 + Ĉ10

+

r3 +
3

r4�
�

�a2�1

+ Ĉ2�1
+ �e�i�

¯ ,

where we have used that Cjm
+ =0 if �m � = j and Ĉjm

+ =0 when-
ever J j+1,m=0. Therefore, both the potential and the normal
component of the electric field at the interface are asymptoti-
cally dominated by an angular-independent decay propor-
tional to 1 /r3; anisotropic behavior arises only in subleading
terms. By continuity, this conclusion also holds asymptoti-
cally for the fields at a fixed height h above or below the
interface �r� �h��.

This result is not exclusive of the single-particle configu-
ration: if there are several particles at the interface, one can
surround each of them by a ball of radius R and the solution
��r� of the electrostatic problem will be written as a super-
position of single-particle potentials determined by the total
potential at the surface of each ball �in general different from
the potential �R�� ,�� in the single-particle configuration�.
For each of these single-particle potentials the expansion �7�
still holds, since it does not depend on the precise value of
the potential at the balls �which affects only the numerical
value of the coefficients of the expansion�.

We calculated as an illustrative two-dimensional example
the electrostatic potential for an inhomogeneously charged
cylinder at an air-water interface �see the inset of Fig. 2 for
some definitions�. Because of its two-dimensional nature,
this problem is amenable to a numerical treatment. Here, the
multipole expansion at the interface gives ���z=0�
�a0 ln�x�+ px /x+qxx /x2+ ¯ and ���+ /�z�z=0� pz /x2+ ¯ .
The numerical solution for �� shows that the in-plane dipole
term proportional to x−1 is absent and the asymptotic expan-
sion starts with the quadrupolar term �see Fig. 2�. The as-
ymptotics for ���+ /�z�z=0 �not shown� also contains a term

proportional to x−2, which is interpreted as the effect of a
counterion-generated dipole component pz perpendicular to
the interface. These findings, most notably the absence of px,
match the previous ones in three dimensions.

The free energy functional of a multiparticle configuration
in the linear screening approximation reads �14�

F��� =
 d3r�C�r�� −
��r�
8


��2�r��2 + ����2�� , �9�

where the charge density �C�r� is localized on the colloidal
particles. This includes the electrostatic energy as well as the
entropy associated with the ion distribution. The extremum
of F��� provides the field equation in thermal equilibrium,
� · �����=��2�−4
�C. With the help of this equation, the
free energy in equilibrium simplifies to

Feq��x��� =
1

2

 d3r �C�r���r� , �10�

which is known as the potential of mean force for the de-
grees of freedom x� �position of the center of a ball of radius
R enclosing the �th particle�. One may decompose Feq=F0

+�F, where F0 is the equilibrium free energy in the limit
�x�−x��→ �isolated particles�. The total potential can be
similarly written as �=����

0 +��, where ��
0�r� denotes the

potential field generated by the �th particle in isolation and
���r ; �x��� is the total perturbation induced by the presence
of other particles. Due to the linear nature of the problem, the
perturbation ��,

���r� = �
���



�r�−x���R

d3r�G���r,r����
0�r�� , �11�

can be written in terms of a generalized susceptibility
G���r ,r�� depending on the precise shape and charge distri-
bution of the particles.

2These are asymptotic expansions. There are also exponentially
decaying terms which cannot be recovered from an expansion like
Eq. �7�.
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FIG. 2. Potential along the interface for an inhomogeneously
charged cylinder half-immersed in water. Maxwell’s equations hold
in the upper phase and the cylinder and the Poisson-Boltzmann
equation holds in the lower phase. The parameters are given in the
inset, the numerical calculations have been done using FEMLAB.
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Since �0�r� near the interface exhibits asymptotically an
isotropic decay proportional to 1 /r3, ���r ; �x��� depends
only on d��= �x�−x�� �and not on the orientation of x�−x��
in the asymptotic limit d��→. Furthermore, �� is rescaled
by a factor �−3 if all distances d�� are rescaled simulta-
neously by a factor �. From Eq. �10� the same property holds
for �F��x���. In particular, for a two-particle configuration
this yields an asymptotic potential of mean force of the form

Feq�d� − F0 �
B

d3 �d → � , �12�

and the constant B is positive for like particles. In analogy
with Eq. �1�, it is natural to interpret this expression as the
interaction energy between two effective dipoles perpendicu-
lar to the interface.

In conclusion, we have shown that the forms of the mul-
tipole expansion of the potential around a charged colloid
and of the effective interaction energy between two colloids
trapped at a water interface are qualitatively different from
the situation in bulk. The dominating interaction terms can
be qualitatively understood by assuming water to be a perfect
conductor. The leading interaction term between the colloids
a distance d apart is of dipole-dipole type �proportional to
d−3� and isotropic in the interfacial plane. In other words,
even if the charges on the colloid surface are distributed
arbitrarily the counterions arrange themselves such that as-
ymptotically the configuration corresponds to an effective
dipole perpendicular to the interface. The precise evaluation
of the dipole strength for a given, arbitrary configuration is a
difficult problem; for some insight see Ref. �17�. Orientation-
dependent interactions and thus possible attractions for like-
charged colloids arise only in subleading order. This is in
marked contrast to the analysis of the experiment reported in
Refs. �5,6�. Motivated by the experimentally found inhomog-
enous surface charge, it was pictorially suggested �see Fig. 1
in Ref. �5�� that spontaneous fluctuations in the colloid’s ori-
entation would generate �via an instantaneously equilibrating

counterion cloud� effective in-plane dipoles pi with corre-
sponding interactions proportional to �d2�p1 ·p2�−3�d ·p1�
��d ·p2�� /d5. After averaging over the orientation fluctua-
tions, such an interaction would lead to an effective, isotro-
pic attraction competing with the isotropic dipole-dipole re-
pulsion. According to Ref. �6�, the total interaction potential
would exhibit an attractive minimum due to the effect of the
fluctuating in-plane dipoles at rather small distances �d
�2.2 colloid radii RC, so small that already the use of a pure
dipole-dipole interaction casts serious doubts on the reliabil-
ity of the model�. The analysis in Ref. �15� purporting to
support this picture is actually incomplete and just states that
no monopolar term arises, without entering into a systematic
analysis of constraints on higher-order multipoles. The re-
sults of our work imply that asymptotically an in-plane di-
polar interaction cannot arise if the counterions are equili-
brated �see Eq. �12��. Consequently, one cannot expect
asymptotically relevant attractions from the orientational
fluctuations of the colloids. However, for smaller d the
asymptotic 1 /d expansion is likely to break down. For small
colloid radius RC��−1, this becomes relevant when d��−1:
in this case the screening clouds of the colloids overlap and
the interaction falls off exponentially with d before crossing
over to an algebraic decay �2,12�. For large colloid radius
RC��−1, the precise shape and charge distribution of the
colloids will determine the interaction whenever d�RC.
However, even in that case the existence of attractions is
doubtful, considering the general results on the absence of
like-charge attraction in confined geometries �16�. In any
case, the results from the model studied in Refs. �5,6� are not
reliable since the model presupposes an interaction energy
that does not satisfy the correct asymptotic decay given by
Eq. �12�.
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